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SUMMARY 

The piecewise linear method (PLM) based on time operator splitting is used to solve the unsteady 
compressible Euler equations describing the two-dimensional flow around and through a straight wall inlet 
placed stationary in a rapidly rotating supersonic flow. The PLM scheme is formulated as a Lagrangian step 
followed by an Eulerian remap. The inhomogeneous terms in the Euler equations written in cylindrical co- 
ordinates are first removed by Sod's method and the resulting set of equations is further reduced to two sets of 
one-dimensional Lagrangian equations, using time operator splitting. The numerically generated flow fields 
are presented for different values of the back pressure imposed at the downstream exit of the inlet nozzle. An 
oblique shock wave is formed in front of the almost whole portion of the inlet entrance, the incoming 
streamlines being deflected towards the higher pressure side after passing through the oblique shock wave and 
then bending down to the lower pressure side. A reverse flow appears inside the inlet nozzle owing to the 
recovery pressure of the incoming streams being lower than the back pressure of the inlet nozzle. 

KEY WORDS PLM Scheme, Rotating Flow, Supersonic Flow, Numerical Calculation, Shock Wave, Unsteady 
Compressible Euler Equations 

INTRODUCTION 

In achieving the desired performance of a gas centrifuge for uranium enrichment, proper design of 
the stationary Pitot-like tubes (so-called scoops) inside the rotating cylinder is one of the most 
important factors. The scoops extract the heavy and the light gases separated by the centrifugal 
force and induce a recirculating flow by reducing the angular velocity of the rotating gas about the 
scoops. The recirculating flow is essential to accomplish considerable separation in a single 
machine. The gas flow through the scoops with maximum total pressure recovery and the drag 
moment adequate to create the optimum recirculating mass flow are required for design conditions 
of the centrifuge. To meet these requirements, detailed calculations of the flow field around and 
through the scoop inlet are necessary. The inlet flow field is, of course, three-dimensional and 
complex, owing to the formation of shock waves. The complexities are further increased by the 
fact that the flow field is influenced by the stratification in the free stream. 

In a previous paper,' a numerical analysis of the flow near a scoop inlet was presented by 
numerically solving the Euler equations using the Beam-Warming scheme. A simplification was 
made by considering the flow in the symmetry planes, where the flow can be regarded as two- 
dimensional (Figure 1). A further simplification was that of negligible velocity gradient normal to 
the planes, and the flow was assumed to be described by the Euler equations for planar flow 
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Figure I .  Planes of symmetry of the flow field about the scoop inlet 

although we could take the normal velocity gradient into account by using the velocity 
distributions in the planes themselves. The steady solutions were presented for various values of the 
back pressure imposed at the downstream of the scoop inlet. It was found that the stratification of 
the incoming stream has significant effects on the flow field; that is the shock wave shapes and the 
velocity distributions around the inlet nozzle differ from those formed in the uniform supersonic 
stream. 

In the present work, the inlet flow fields in a rotating supersonic stream are calculated by the 
piecewise linear method developed by Van Leer.2 Although geometrical and physicalsimplifications 
are similar to those made in the previous paper,' there are substantial differences in the present 
calculations. These are 

1. Bluntness of the scoop leading edge is taken into account. 
2. The top boundary is located four inlet-spans away from the scoop in the direction transverse 

to the incoming stream. Thus, shock waves do not cross the top boundary, where the flow 
variables are determined assuming a solid-body rotation. 

3. The bottom boundary is the wall of the rotating cylinder, where the reflecting boundary 
conditions are imposed. 

4. The piecewise linear method (PLM) based on time operator splitting is used to solve the 
unsteady equations of motion describing the transonic flow of inviscid and non-heat- 
conducting gas. 

5. The results of calculation are presented by contour plots of the pressure fields as well as the 
velocity vector representation. 

GOVERNING EQUATIONS 

Since the main building block is the Lagrangian equations of motion for an inviscid, non-heat- 
conducting, compressible gas, we shall first derive these equations from the Eulerian equations 
normally used for the numerical computation of non-stationary flow fields. 

The continuity, momentum and energy equations in cylindrical co-ordinates can be written in 
the conservative form: 
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P E = - + + ( u ~  + u ’ ) ,  
2Y P 

( 5 )  

where p ,  u, u, p and E denote the density, the radial velocity, the azimuthal velocity, the pressure and 
the total energy per unit mass, respectively, made dimensionless by the corresponding dimensional 
quantities denoted by bars: 

where qmax is the limit speed, po  is the stagnation pressure, p o  is the stagnation density, Wis the 
width of the inlet nozzle, and the subscript ‘e’ denotes the peripheral flow quantities of the free 
stream, rotating at the given rotational Mach number; ti is defined by ti = (y - 1)/2y, where y is the 
ratio of specific heats. The azimuthal metric coefficient, r,  is assumed equal to the radius of the 
rotating cylinder, R, since the scoop inlet is located near the periphery. This approximation 
introduces a significant simplification into the numerical algorithm. The geometry and the 
cylindrical co-ordinate system are shown in Figure 2. 

Inhomogeneous terms in equations (1)-(4) can be removed by applying time operator splitting 
(the method of Sod3). The resulting set of equations takes the form 

scoop 

Figure 2. Geometry and the cylindrical co-ordinate system 
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with 

The second step is to use operator splitting to reduce equations (6)-(9) to the separate equations 
in one-dimensional form: 

(15) 
a P  aPu -++=o ,  
at ar 

a P  apv  -+-=o, 
at a s  

apu  apuv  
at as 

a p E  a u ( p E  + t i p )  
at + a s  

-+- = 0, 

= 0. 

These equations are further rewritten in the following non-conservative form: 

a p  a p  au 
- + u-+ p -  = 0, 
dt dr dr 
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p -++- +-=o, (: :;) a;: 
p( p + .$) = 0 ,  

= 0 ,  

ap ap au -+ u - +  p-= 0 ,  
at as as 

p(g+ +) =o,  

We now introduce the mass co-ordinates, 

t= 1' pdr (30) 

q = 1' pds. (31) 

ro 

and 

so 

Then, the independent variables are changed to <, q, t, and the density p is replaced by the specific 
volume T. In terms of these variables, equations (22)-(29) reduce to 

a+ a K p  
at a t  - + + = o ,  

au 
at 
-=o,  

dE &up -+- = 0,  
at a t  

(33) 

(34) 

(35) 

au 
- = O ,  
at (37) 

aU aKP 
at aq 
-+-=o, 
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The above equations together with equations (lo)-( 13) are the basic equations used in the 
present numerical computations. 

INITIAL AND BOUNDARY CONDITIONS 

At the start of calculation, a complete initial flow field must be provided at  all computational 
meshes. The initial flow field in the free stream is calculated, assuming a solid-body rotation: 

(40) 

u = 0, (42) 

M = MROr, (44) 

where (T is the ratio of the inlet width to the radius of the rotating cylinder, and the rotational 
Mach number, MR, is defined in terms of the peripheral velocity of the rotating cylinder. 
Immediately downstream of the shock wave, flow variables are determined using a prescribed 
shock shape and the Rankine-Hugoniot shock relations. The shock wave shape is assumed to 
be described in terms of Cartesian co-ordinates, x,y by 

as shown in Figure 3, where the stand-off distance, b, and the half width, x l ,  at the entrance 

Figure 3. Shock wave generated by a parabola 
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plane of the inlet are guessed from the shock wave shape ahead of a flat-faced blunt body in a 
uniform supersonic stream. From equation (45), the shock angle b is determined by 

b=--  71 tan-l($x). 
2 

Downstream of the shock wave, the values of the flow field are calculated by linearly interpolating 
the values at the shock wave and at the outflow boundary where free stream values are initially 
specified. At the outlet of the scoop nozzle, the static pressure, pB is prescribed and other flow 
variables are obtained from the steady-state forms of the governing equations, assuming uniform 
parallel outflow. 

The boundary conditions on the solid boundaries are determined from the reflection principle, 
and the flow properties at the downstream boundary external to the inlet nozzle are calculated 
by the zeroth-order extrapolation from the interior. The boundary conditions on the upstream 
and upper boundaries are evaluated assuming a solid-body rotation. 

SOLUTION PROCEDURE AND THE NUMERICAL SCHEME 

To solve the system of basic equations, the one-dimensional problem in the l-direction is solved 
using equations(32)-(35) in a first step, and the provisional values are corrected in a second 
step using equations (36)-(39) in the q-direction. The final values are calculated by solving the 
system of ordinary differential equations, (lo)-( 13), using the above solutions to determine the 
inhomogeneous terms. 

The method used to solve the one-dimensional problem is a modified version of the PLM 
(piecewise linear method) algorithm formulated as a Lagrangian step, followed by an Eulerian 
remap.’ The method is outlined as follows. The Eulerian space grid is equally spaced, as shown 
in Figure 4, where zones are denoted by suflixesj and boundaries are distinguished by 3 integers, 
j + 5. To calculate the zone average values of the specific volume T;+ l ,  the velocity, u;+ and 
the total energy, E;” at t ” + l  = t ” + A t ,  from the known values at the time t = t ” ,  the 
equations (32), (33), (35) are approximated by the following difference equations: 

At 
, ;+I = T j ” + - ( i i j + l / ’ - u j - l , ’ ) ,  

A j l  

j -1 j fl 

3 
1- 1 j+ - 

2 
3 j+ - 
2 

(47) 

Figure 4. Eulerian space grids 
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where U j + l , 2  and pj+l/2 are the time-averaged values for the velocity and pressure at the 
edges of zones. Since the Euler co-ordinate of an interface, r j +  1,2 is updated according to 

(50) YJ++: ,~  = ry+ 112 + U j +  1,2At, 

equation (47) can be rewritten in the form 

The velocity component in the ?-direction, v, remains unchanged during the time step, as seen 
from equation (34). 

The values of iij+l,2 and p j f l i 2  are obtained following the procedure described by Colella 
and W ~ o d w a r d , ~  by first calculating averages of the dependent variables over the spatial domains 
which can influence the zone edge during the time step, whereas in the present computation 
piecewise linear profiles of flow variables are assumed in each zone (see Figure 5). The interaction 
of the two averaged states, S,(p,, u,, p,) and S,(p,, u,, p,) adjacent to the interface is described 
by a solution to Riemann's problem. The method of solving a Riemann problem is briefly 
described below. In the Lagrangian formulation, the zone interface is always a contact 
discontinuity with u = U and p = p after breakdown of the interface. The left and right states, 
S, and S, are separated from an intermediate state, S, by waves, W, and W, which may be either 
shock waves or rarefaction waves, depending on the relative values of the left and right states. 
Across waves, the following jump conditions can be derived from the integral form of the 
conservation laws: 

W,(U, - U) - K ( P  - PL)  = 0 ,  

WR(U - u R )  - K ( p  - pR) = 0 ,  

(52)  

(53) 
where W, and W, are the speeds of waves propagating into the left and right directions, 
respectively. According as p 2 pk or p < pk(k = L, R), 

5 .  1 
'-3 

5 .  1 '5 
5 .  3 '5  

Figure 5 .  Average of dependent variables over the domain of dependence 
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or 

Solving U and p from equations (52) and (53), we obtain 

61 1 

(54) 

(57) 
U =  WLUL + WRUR - K(PR - P L )  

WL + Wkt 

Equations (54), (55) and (56) are three equations with three unknowns p, W,, W,. These equations 
are solved through the iterative procedure suggested by Chorin, as described by Saito and Glass.5 
After satisfactory convergence, U is determined from equation (57). 

When calculating smooth flow, the wave velocities, Wk,  become nearly equal to Lagrangian 
sound speed ck. Then equations (56) and (57) reduce to the difference approximation to the 
average form of the characteristic equations obtained from equations (32) and (33), that is 

d(u + tiC-’p) = 0. (58 )  

Given the updated zone average quantities pJ+’ ,  uJ” and p J + ’ ,  the slopes Ap;+l, Au;+l 
and Apj”” are calculated by centrally differencing the average values in the adjacent zones: 

where uj”” represents p J + l ,  uj””, or p;” .  The slope of specific volume, Azj”” is calculated 
by the relation 

&j”+ ’ = - Apj”’ /(zj”’ ’)’. (60) 
On the other hand, the values of PJ::/~, ~ j ” : : ~ ~ ,  vj”::,, and p;: : / ,  at zone edges 
are calculated using average values and their slopes. The total energies at the zone edges, 
Ej”++:,2 are then calculated by the relation 

These values are then used to calculate AE;+ ’. To suppress numerical oscillations, the 
monotonicity algorithms are applied to the slopes calculated above. The algebraic form of the 
algorithms’ is 
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Table I. Computational procedures 

Given variables Variables to be computed 

Lagrangian step 
in the r-direction 

P. 7, u, A,P, Ar7,Aru 7, P, u, E ,  P 

This limiting of the slopes guarantees that the linear distribution will not take values beyond 
the avearge values in the adjacent zones. 

At  the end of the Lagrangian step, an Eulerian zone may contain matter from adjacent zones. 
The new values of the conserved quantities, p, pu and p E ,  are computed with the aid of 
piecewise linear distribution by the following formulae: 

where the new mass co-ordinate, 5;::i2, is calculated from the relation: 

5;::/2 = 5;+1/2  -(r;::/2 -r;+l/Z){P"+l -(rJ& - r;-1/2)/(~J::/Z-rJ_+:/2)1}. 

(66) 
The above computational procedures are summarized in Table I. 

These PLM schemes are implemented as a two-step method in the form 

(67) a n  + 1 = ~ ? / 2  ~ A t ~ A t i 2  n 
s r a ,  

where L represents the PLM operator, the subscripts refer to the spacial direction and the 
superscripts denote the time increment that the solution is advanced. It is in this form that the 
splitting can be used to obtain an approximate solution valid to second order. Once the solution 
is obtained during each cycle of equation (67), the system of ordinary differential equation is 
solved by the Runge-Kutta-Gill method. 

RESULTS AND DISCUSSION 

Calculations were performed for the straight-wall inlet shown in Figure 6. The ratio of the width 
to the radius of the rotating cylinder is set to 0.1. The rotational Mach number is 3.0 and the 
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Rigid Body Rotation 

- 29 
5,: 
c Reflecting Boundary - 3  

Figure 6. Computational grid and geometry of the inlet 

ratio of specific heats is assumed to be 1.06. At this rotational Mach number, the inlet width 
normalized to the density scale height of the incoming rotating flow takes the value of 0.954. 

A 51 x 41 grid point mesh system was used with uniform mesh increments in the r and s 
directions (Ar = As = 0.1). The time step size is determined from the relation: 

Ar Ar As 

where the Courant number, v, is set equal to 0.5. 
To study the influence of the artificial upper-wall distances on the flow solution near the scoop 

inlet, a series of computations was carried out by removing upper grid lines, starting from large 
grid system. A simple boundary condition was used at the upper boundary, setting 

f 1 . k  = f2,k- 1 9  

when a shock wave is found to cross the boundary. This boundary condition is given by the 
simple wave method6 assuming the Mach lines along the mesh diagonals. Comparisons between 
calculations performed with the three different mesh systems, i.e. the 61 x 41 grid, the 51 x 41 
grid and the 41 x 41 grid in the r and s directions are presented in Figures 7-9 in terms of 
pressure contours. Essentially identical results are obtained even though a shock wave crosses 
the upper boundary for the 41 x 41 grid system. Thus, the 51 x 41 mesh system was used 
throughout the computation by assuming that ,the flow properties at the upper boundary can 
be evaluated on the basis of a solid-body rotation. 

Figures 8, 10 and 11 show pressure contours for different values of the back pressure imposed 
at the outlet of the scoop nozzle. Corresponding flow patterns are shown in Figures 12-14 in 
terms of velocity vectors. These Figures show that both the detached bow shock wave ahead 
of the inlet and the expansion wave on the external wall of the inlet are well captured. Note 
that shock waves can be confined in the narrow region consisted of about two meshes, 
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Figure 16. Schematic illustration of flow pattern 

demonstrating an advantage of the PLM scheme over the 'shock capturing' schemes which 
significantly smear shock waves. 

Of particular interest is the formation of an oblique shock wave in front of the almost whole 
portion of the inlet entrance. The incoming streamlines deflect towards the higher pressure side 
after passing through the oblique shock wave and then bend down to the lower pressure side, 
creating a centrifugal force to balance the strong pressure gradient in the radial direction, 
originating from the radial pressure gradient in the free stream, where the force balance in 
the r-direction is given in terms of the azimuthal velocity, u, and the radius of the rotating 
cylinder, R:  

P O 2  (grad p)-e ,  = -. 
R 
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The azimuthal velocity decreases remarkably after passing through the shock wave, whereas the 
radial pressure gradient remains without a significant change. Thus, the radius of the curvature 
of the streamline should become much less than R to guarantee the force balance. 

With decreasing the back pressure, the oblique shock wave ahead of the inlet nozzle moves 
closer to the entrance and a part of the shock wave is swallowed into the nozzle, thereby creating 
a small bow shock wave in front of the blunt leading edge locating on the high pressure side 
(see Figure 11). A part of the oblique shock wave is also swallowed into the gap between the 
nozzle wall and the wall of the rotating cylinder, at which the shock wave reflects. Note that 
the streamtube separating the extracted and unextracted flows expands along the inlet nozzle 
length. Thus, the flow field inside the nozzle resembles that in a duct of variable cross-sectional 
area. It is remarkable that one of the stagnation points is located inside the inlet nozzle. Regardless 
of the value of the back pressure, there appears a reverse flow in the vicinity of the leading edge 
on the low pressure side. The flow spills over it and in so doing undergoes a Prandtl-Meyer 
expansion followed by a recompression downstream of the external wall of the inlet nozzle. The 
extracted mass flow rate into the nozzle is much less than the flow rate estimated by assuming 
a parallel incoming stream even for low back pressures, as expected from the numerically 
generated flow field. The calculated mass flow normalized to that of the incoming parallel stream 
is plotted in Figure 15 as a function of the back pressure. Based on the flow field generated from 
the numerical results a qualitative flow model as shown in Figure 16 can be constructed for a 
rotating supersonic flow impinging upon a stationary inlet nozzle. 

Computations were performed at Tokyo Institute of Technology, the program being developed 
and run on the computer HITAC-M280H of the computing centre which can handle about 13 
million instructions per second. The CPU time required for each calculation was about five 
minutes. 
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